skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Liwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Spinodoid architected materials have drawn significant attention due to their unique nature in stochasticity, aperiodicity, and bi-continuity. Compared to classic periodic truss-, beam-, and plate-based lattice architectures, spinodoids are insensitive to manufacturing defects, scalable for high-throughput production, functionally graded by tunable local properties, and material failure resistant due to low-curvature morphology. However, the design of spinodoids is often hindered by the curse of dimensionality with an extremely large design space of spinodoid types, material density, orientation, continuity, and anisotropy. From a design optimization perspective, while genetic algorithms are often beyond the reach of computing capacity, gradient-based topology optimization is challenged by the intricate mathematical derivation of gradient fields with respect to various spinodoid parameters. To address such challenges, we propose a data-driven multiscale topology optimization framework. Our framework reformulates the design variables of spinodoid materials as the parameters of neural networks, enabling automated computation of topological gradients. Additionally, it incorporates a Gaussian Process surrogate for spinodoid constitutive models, eliminating the need for repeated computational homogenization and enhancing the scalability of multiscale topology optimization. Compared to ‘black-box’ deep learning approaches, the proposed framework provides clear physical insights into material distribution. It explicitly reveals why anisotropic spinodoids with tailored orientations are favored in certain regions, while isotropic spinodoids are more suitable elsewhere. This interpretability helps to bridge the gap between data-driven design with mechanistic understanding. To this end, we test our design framework on several numerical experiments. We find our multiscale spinodoid designs with controllable anisotropy achieve better performance than single-scale isotropic counterparts, with clear physics interpretations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  2. Responsive materials offer solutions to complex engineering challenges by enabling systems to adapt their shapes or properties in response to external stimuli. To fully harness the potential of responsive materials, inverse design methods that integrate multiple types of stimuli and manufacturing processes are necessary. We present a unified, autonomous codesign framework that simultaneously optimizes structure, manufacturing, materials, and stimuli for responsive material systems, achieving target shape morphing under multiple stimuli without relying on human heuristics or expertise. It integrates generalized topology optimization with hybrid data-physics differentiable simulations to achieve flexible, manufacturing-aware designs for network-like responsive material systems. We showcase our framework with a multimaterial three-dimensional printing process with high material tunability, which we use to fabricate liquid crystal elastomer systems that morph into different forms in response to heat and light. The exceptional flexibility and efficiency of our method will advance shape-morphing applications spanning soft robotics to drug delivery. 
    more » « less
    Free, publicly-accessible full text available September 12, 2026
  3. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    Cyclical MCMC is a novel MCMC framework recently proposed by Zhang et al. (2019) to address the challenge posed by high-dimensional multimodal posterior distributions like those arising in deep learning. The algorithm works by generating a nonhomogeneous Markov chain that tracks -- cyclically in time -- tempered versions of the target distribution. We show in this work that cyclical MCMC converges to the desired limit in settings where the Markov kernels used are fast mixing, and sufficiently long cycles are employed. However in the far more common settings of slow mixing kernels, the algorithm may fail to converge to the correct limit. In particular, in a simple mixture example with unequal variance where powering is known to produce slow mixing kernels, we show by simulation that cyclical MCMC fails to converge to the desired limit. Finally, we show that cyclical MCMC typically estimates well the local shape of the target distribution around each mode, even when we do not have convergence to the target. 
    more » « less
  4. Abstract We propose a very fast approximate Markov chain Monte Carlo sampling framework that is applicable to a large class of sparse Bayesian inference problems. The computational cost per iteration in several regression models is of order O(n(s+J)), where n is the sample size, s is the underlying sparsity of the model, and J is the size of a randomly selected subset of regressors. This cost can be further reduced by data sub-sampling when stochastic gradient Langevin dynamics are employed. The algorithm is an extension of the asynchronous Gibbs sampler of Johnson et al. [(2013). Analyzing Hogwild parallel Gaussian Gibbs sampling. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) (Vol. 2, pp. 2715–2723)], but can be viewed from a statistical perspective as a form of Bayesian iterated sure independent screening [Fan, J., Samworth, R., & Wu, Y. (2009). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013–2038]. We show that in high-dimensional linear regression problems, the Markov chain generated by the proposed algorithm admits an invariant distribution that recovers correctly the main signal with high probability under some statistical assumptions. Furthermore, we show that its mixing time is at most linear in the number of regressors. We illustrate the algorithm with several models. 
    more » « less
  5. Abstract Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery. 
    more » « less
  6. Abstract Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Often built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active learning-based data acquisition framework aiming to guide both diverse and task-aware data generation. Distinctly, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design of metamaterials: when a massive (∼O(104)) shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets are used to demonstrate the efficacy. Applicable to general image-based design representations, t-METASET could boost future advancements in data-driven design. 
    more » « less
  7. Abstract Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of the multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active-learning-based data acquisition framework aiming to guide both balanced and task-aware data generation. Uniquely, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design: when a massive shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets (∼ O(104)) are used to demonstrate the efficacy. Applicable to general design representations, t-METASET can boost future advancements in data-driven design. 
    more » « less